ความแตกต่างระหว่างการผสมผสานและการผสมผสาน

Anonim

Permutations vs Combinations

Permutation และ Combination เป็นแนวคิดที่เกี่ยวข้องสองอย่าง แม้ว่าพวกเขาดูเหมือนจะออกมาจากแหล่งกำเนิดเดียวกันพวกเขามีความสำคัญของตัวเอง โดยทั่วไปสาขาวิชาทั้งสองเกี่ยวข้องกับ 'การจัดวัตถุ' อย่างไรก็ตามความแตกต่างเล็กน้อยทำให้แต่ละข้อ จำกัด สามารถใช้งานได้ในสถานการณ์ที่ต่างกัน

จากคำว่า 'Combination' คุณจะได้แนวคิดเกี่ยวกับ 'Combine Things' หรือเฉพาะ: 'การเลือกวัตถุหลายอย่างออกจากกลุ่มใหญ่' ในสถานการณ์เฉพาะกรณีนี้การหาชุดค่าผสมไม่ได้เน้นที่ "รูปแบบ" หรือ "คำสั่งซื้อ" สามารถอธิบายได้อย่างชัดเจนในตัวอย่างต่อไปนี้

ในทัวร์นาเมนต์ไม่ว่าจะมีสองทีมที่มีการระบุไว้เว้นเสีย แต่จะปะทะกันระหว่างพวกเขาในการแข่งขัน จะไม่มีผลใด ๆ ถ้าทีม 'X' เล่นกับทีม 'Y' หรือทีม 'Y' เล่นกับทีม 'X' ทั้งสองมีความคล้ายกันและสิ่งที่สำคัญคือทั้งสองได้รับโอกาสในการเล่นกับแต่ละอื่น ๆ โดยไม่คำนึงถึงคำสั่ง ดังนั้นตัวอย่างที่ดีในการอธิบายการรวมกันนี้คือการทำให้ทีมจำนวนผู้เล่น 'k' ออกจากจำนวนผู้เล่นที่พร้อมใช้งาน 'n'

n k (หรือ n_k) = n! / K! (n-k)! คือสมการที่ใช้ในการคำนวณค่าสำหรับปัญหาพื้นฐานที่เกิดจาก 'Combination'

ในทางกลับกัน 'Permutation' เป็นเรื่องเกี่ยวกับการยืนสูงใน 'Order' กล่าวอีกนัยหนึ่งรูปแบบหรือรูปแบบในการเปลี่ยนแปลง ดังนั้นหนึ่งก็สามารถพูดได้ว่าการเปลี่ยนมาเมื่อ 'Sequence' เรื่อง ที่ยังระบุเมื่อเปรียบเทียบกับ 'Combination', 'Permutation' มีค่าตัวเลขที่สูงขึ้นตามความบันเทิง ตัวอย่างง่ายๆที่สามารถนำมาใช้เพื่อให้เห็นภาพของ 'Permutation' ได้อย่างชัดเจนคือการสร้างตัวเลข 4 หลักโดยใช้ตัวเลข 1, 2, 3, 4

กลุ่มนักเรียน 5 คนกำลังเตรียมพร้อมในการถ่ายรูปประจำปี พวกเขานั่งเรียงลำดับจากน้อยไปหามาก (1, 2, 3, 4 และ 5) และอีกรูปถ่ายหนึ่งภาพสองคนสุดท้ายเปลี่ยนที่นั่งกันและกัน เนื่องจากคำสั่งซื้อ (1, 2, 3, 5 และ 4) แตกต่างไปจากคำสั่งดังกล่าวทั้งหมด

n k (หรือ n ^ k) = n! / (n-k)! เป็นสมการที่ใช้ในการคำนวณคำถามเชิงเส้น 'permutation'

สิ่งสำคัญคือต้องเข้าใจความแตกต่างระหว่างการเปลี่ยนแปลงและการรวมกันเพื่อระบุพารามิเตอร์ที่ถูกต้องที่ต้องใช้ในสถานการณ์ที่แตกต่างกันและเพื่อแก้ปัญหาที่กำหนด โดยทั่วไปผลลัพธ์ 'Permutation' จะมีมูลค่าสูงกว่าที่เราเห็น

n ^ k = k! (n_k) คือสัมพัทธภาพระหว่างพวกเขา ในบรรทัดฐานคำถามมีปัญหา "Combination" มากกว่าเนื่องจากมีลักษณะเฉพาะ